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The effect of the shape of an electrode on the course of electrochemically driven transient mass
transfer at potentiostatic conditions is investigated for the case of a nonlinear velocity profile
in the region of the concentration boundary layer. Particular results for circular electrodes are
given.

In our earlier paper! we have considered the theory of transient convective dif-
fusion for the case of a nonlinear velocity proflle and with the assumption that the
working electrode is an infinite straight band of a width L oriented in the bypassed
planar wall perpendicularly to the flow direction. Here, we generalize this theory!
to the case of an arbitrary planar convex electrode of finite dimensions.

THE GENERAL THEORY

Let us consider a transient mass-transfer process in an unidirectionally flowing fluid
with the velocity field

v, =u(z) = Az, v,=v,=0 (1)

over a planar wall, z = 0, in which the mounted electrode covers a simply connected
domain # (Fig. 1). The mathematical model of the transient process considered
is described by the transport equation

D d*c — AzPd,c — 0c =0 #))
with the boundary conditions

c=cy: for t<0 or z> o or (x,y)e , (3a)
c=0: for t>0 and z=0 and (x,y)e® (3b)
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Due to the neglection of the y-th component of diffusional flows, i.e., of the term
D 3} in the transport equation (2), this simplified formulation of the problem
contains the coordinate y only as a parameter. This, together with the neglection
of the corresponding x-th component of diffusional flows, belongs to usual simplifica-
tions of equations of convective diffusion?, which is justified at sufficiently high
Péclet numbers,

Pé = IX'=9(4/D)* = u(3) L|D “
with

q=1/2+p), (5)

L is characteristic length of the electrode, D is the diffusion coefficient and ¢ is the
Nernst thickness of the concentration boundary layer related to the mean current
density I,

8 = veoFDI . (6)

The concentration field, which is the solution of the 4-dimensional boundary-
-value problem (2), (3a,b), can be expressed as ¢ = ¢(z; t, &), where £ is a new longi-
tudinal coordinate measured from the leading edge of the electrode at a given y =
= const. (Fig. 1). At & = x, this field is the solution to the problem for the above
mentioned band electrode!. According to known results!, the corresponding field
of instantaneous local current densities can be expressed explicitly also here:

1) €< A)
I(t, y, &) = (7a,b)
L) ; &> A1),

FiG. 1

Geometry of the working electrode. x,y
Cartesian coordinates in the plane z= 0,
H =: total width of the electrode, L(y) local
length of the electrode, ¢ local longitudinal
distance from the leading edge of the electrode,
de, # region of the electrode, A" region
before the electrode; the arrows mark the
direction of the liquid stream along the

T ] t r t t wall z=0
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where transient, I;, and steady, I, current densities are given by the relations
Ii(f) = veoF~12pi2g=1/2 (8
I (&) = veo Fr='2C ~9(BA[E)S. €9)

The coordinate of the instantaneous distance of the boundary between the transient
and steady zone from the leading edge of the electrode, ¢ = A, is given by the rela-
tion

A(f) = BADP/?1*p/2 (10)
with

B = ¢*(='?/r(q + 1))'/9. (11)

By the method employed in our earlier work! we can also find the expression for
instantaneous mean current densities, I, for a given longitudinal line y = const.
of length L = L(y):

I(L); L<AQ)

Ly =2 (1 y, &) ae = 12a,b
R I

with
L = 2 (13)
It L) = T-172 (1 + T}J T1+v/2> 1) (14)
T = tft.(L) (15)
to(L) = D™PY(BAJL)"2, (16)

The parameters I (L) and t,(L) in these equations represent the steady local cur-
rent density at the end of the longitudinal line (y = const., 0 < ¢ < L(y)), and the
corresponding local time of stabilization of diffusion fluxes, resp.

Thus, the calculation of instantaneous mean current densities, I, over the entire
surface of the electrode, becomes a simple mechanical task of calculating the integral

() = Lz(:, v, &) dy dé / Ldy de = J :ix(t, ») L(Y) dy}/ J :L(y) dy (17a,b)
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since I,(t, ) is given explicitly by relations (12a,b). Specifically it holds for finite
convex electrodes

j "L() (1 y) dy = j L) L(L(y) dy + j L)L LOY) Ay, (18)

where x; = x;(t) is a simple finite interval,

yeu(i) =1 < 1(L(y) (19)

and the complement x, = {(0; H) — 5;} is for convex electrodes the union of at most
two simple finite intervals. The coordinate y = h(f) of the boundary between x;
and x, at time ? is the root of the equation

L(L(h)) = I{(1) . (20)
A Circular Electrode

For a circular electrode of radius R, the dependence L = L(y) can be expressed
in a simple parametric form as

L= L{a) =2Rcos(a), y = y(a) = Rsin (). (21a,b)

The minimum steady local current density, I, and the correspcnding total time
of stabilization of the process, t., are given by the relations

I, = I,(2R) = coFr~Y/2D'~3(BA[2R)" (22)
t, = t,(2R) = D™PYBA[2R)™ 2. (23)

We will use them for introducing the normalized variables
T =tt.,, N=II,. (24a,b)

In our case of the circular electrode, expressions (12a,b), (13), (14) can be rearranged
to read
2+p

. 1+p
I(T, o)1, = , (25a,b)

T-1/2 (1+____cos(x) ); o< x

(1 + p)cos(a)

cos Ya) ; o> x
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where x € (0; n/2) is, for a given T; the root of the equation
cos(x) — T'*?/2 =0. (26)

On inserting these expressions into relations (18)—(20), we obtain the following
result for T < 1:

/2
N(T) = 3 J. 17 'I(T, o) cos? (o) da =
T Jo

- i[gﬂ jn/zcosz_q(a) da + T~/ r <1 + Lco_s(ﬁ) cos® (%) d“:l» (27)

1+ pJ). o 1 + p cos (a)

where x = »(T) = arccos (T'*?/?). For T = 1, the mean current density assumes
its steady-state value I(c0) = I.N(1) and, in accordance with Eq. (27) for T = 1,
it holds

(1) - 2+ 14 _3_ F[(S + 3P)/(4 + 2p)] . (28)
1+ p+/n I'[(7 + 4p)/(4 + 2p)]

The corresponding asymptotic representaticns can be found in the form

4 T 2 T

1+ - - — ; T—-0,
nl+p 3n3p+5
T'2 N(T) ~ (29a,b)
T2N(1) + \/_2l§2_+_13(1 — @) (1 =T)?; To1.
n 151 +p
with
s=1+ pl2 =1/(2q). (30)

RESULTS AND DISCUSSION

Relation (27), in spite of the relative simplicity of necessary calculations, is not
suitable for a common treatment of experimental data. Thus, we attempted to replace
it with a simple empirical formula for Ng(T), which would represent the course
of N(T) as defined by relation (27) with sufficient accuracy in the entire relevant
interval of Te (0; 1). The final form of such a formula as found by an empirical
modification of the asymptotic representation according to Eq. (29a) is

PONGT) = 1 + 4 T 0047568 .,
nl+p 1+ 059%3p

(31)
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which guarantees deviations from the exact N(T) curve according to (27) lower
than 0-005% (i.e., 5 significant digits) for p € <0; 1). The closeness of the empirical
representation (31) and the exact relation (27) is illustrated in Fig. 2b, where 4g =

= (Ng/N — 1).

TABLE I

Exact and approximate values of the normalized steady current densities on the circular electrode

P N(1) Ne(D) NL(1)
0 2:225 672 2:225 672 2:220
1/6 2:048 070 2:048 067 2:045
1/3 1-915 229 1-915 227 1915
1/2 1-812 157 1-812 155 1-813
2/3 1-729 875 1-729 874 1-732
5/6 1-662 682 1-662 682 1-665
1 1-606 783 1-606 783 1-610
2%
0 I
a4
—— 1 05 2 // 1
- 0 &
-2% NT w2 Y 5
o Y 0
12% / // N
b 1 L Vs = 7|
9:5 / // =7
bg < s
Yy
0
-0-0%% 1 '
0 T 1 05 7*e2 1
FiG. 2 F1G. 3

The relative accuracy of the linearized (a)
and empirical (b) transient function N(T).
The numeric labels in the figure are values
of the parameter p

The N—T transient characteristic for a cir-
cular electrode in the linearized coordinates.
Linearized courses according to Eq.
32, ————- exact courses according to Eq.
(27). The numeric labels are values of the
parameter p. The line segment in the figure
denotes a 2%, deviation in NT'/2
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A more crude, but in most practical cases sufficient approximation N,(T) of the
function N = N(T), is offered by the relation

T'2N(T) = 1 + T4[082(1 + p)] . (32)

The relative error of this approximation, 4; = (N /N — 1), does not exceed 1%
of the exact value according to (31) (Fig. 2a). For a better orientation, Table I
contains exact values of the parameter N(1) and their approximations by Ng(1),
Ni(1).

By using the approximation N{(T) according to Eq. (32) we can — within a rela-
tive error of 19} — process any transient data graphically by linear regression methods
employing the linear regression formula

Y = a(1 + bX) (33)
with

Y=1I"%, X ='*r2 (34a,b)

a = 11?1, = veoF /(D|n), (35a)

b™! = 0-82(1 + p): = 1-64(1 + p) (BA/R)"* D™P/2, (350)

To this purpose, however, we must know the values of parameter p preliminarily.
Since the value of a can be determined from independent measurements, e.g., by in-
vestigating transient currents in an unmoving fluid, the parameter p can be estimated
with a good accuracy from the slope of the In (Y/a — 1) vs1n t dependence. A com-
parison between the linearized course Ny(T) and the exact courses N(T) of the
transient characteristic is shown in Fig. 3. The linearized relation (33) is analogous
to the exact theoretical result for a band electrode’ and it becomes identical with it for
an equivalent length dimension of the circular electrcde cf radius R equal to

L= 164R. (36)

In coordinates Y — X, the parameter ¢, defined by Eq. (23) can again be found as the
intersection of the transient curve ar.d the horizontal straightline Y = N(1) a.
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